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Abstract. We analyze the quantum properties of atoms in a magnetic quadrupole field. The quantum
dynamics of ground state atoms in this field configuration is studied firstly. We formulate the Hamiltonian
and perform a symmetry analysis. Due to the particular shape of the quadrupole field in general there exist
no stable states. We provide resonance energies, lifetimes and calculate the density of states and investigate
under what conditions quasi-bound states occur that possess long lifetimes. An effective scalar Schrödinger
equation describing such states is derived. As a next step we explore the influence of a high gradient
quadrupole field on the electronic structure of excited atoms. An effective one-body approach together with
the fixed nucleus approximation is employed in order to derive the electronic Hamiltonian. We present the
energy spectrum and discuss peculiar features such as non-trivial spin densities and magnetic field induced
electric dipole moments.

PACS. 03.75.Be Atom and neutron optics – 32.10.Dk Electric and magnetic moments, polarizability –
32.60.+i Zeeman and Stark effects

1 Introduction

In ultra cold atomic physics inhomogeneous magnetic
fields have now being used for many years in order to
manipulate and trap atoms. In conjunction with efficient
cooling techniques such as evaporative cooling [1] even
the occupation of the lowest quantum levels of magnetic
traps became possible. This has paved the way to en-
ter the regime of quantum degeneracy. Thus the explo-
ration of phenomena such as Bose-Einstein condensation
(see Ref. [2] and references therein) and the emergence of
degenerate Fermi [3] gases became possible.

Apart from these collective phenomena the dynamics
of single atoms is a major subject of current research [4–6].
The controlled manipulation of single atoms is an impor-
tant step on the way to a quantum computer. The internal
structure of atoms can be easily manipulated by external
laser fields. This makes them promising systems for the
realization of qubits which represent the information unit
in quantum information processing. In order to realize a
quantum register the atoms have to be individually ad-
dressable, i.e. their motion has to be confined to certain
spatial areas. Moreover, the magnetic traps have to be
designed such that a sufficiently long confinement of the
atoms center of mass motion is provided. This qualifies

a e-mail: ilesanov@physi.uni-heidelberg.de
b e-mail: Peter.Schmelcher@pci.uni-heidelberg.de

the atom chip since its current carrying microstructures
allow the generation of an almost arbitrary magnetic field
configuration [7,8].

The microscopic size of the current carrying structures
allows the generation of extremely high field gradients
which would be never achievable with macroscopic setups.
Hence the atom chip cannot only be used as a device for
trapping and processing ground state atoms, and more
generally matter waves, but also for the manipulation of
the electronic structure of the atoms themselves: if highly
excited atoms are exposed to such high gradient fields the
common approach which is to treat an atom as a neutral
point-particle essentially fails. Here rather the individual
coupling of the atomic constituents with the external mag-
netic field has to be taken into account [9–11]. As we will
show this leads to unique and surprising phenomena.

The paper is organized as follows: in Section 2 we an-
alyze typical field configurations which can be realized by
using the atom chip. Section 3 is dedicated to a detailed
analysis of the motion electronic ground state atoms in
a magnetic quadrupole trap. We introduce the Hamilto-
nian followed by a analysis of its symmetries. The reso-
nance spectrum of atoms being trapped in a F = 1 hy-
perfine state and the density of states are provided. A
scalar Schrödinger equation is derived which provides an
approximative description of so-called quasi bound states.
The results are applied to the case of 7Li and 87Rb atoms.
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In Section 4 we present an investigation of electron-
ically excited atoms being exposed to a high gradient
magnetic quadrupole field. By employing a fixed nu-
cleus approximation we are led to an effective one-body
Hamiltonian describing the electronic dynamics of the ac-
tive electron of an alkali atom. After a brief symmetry
analysis the spectral properties are investigated. The spin
expectation values and in particular the spatial distribu-
tion of the spin polarization of electronically excited states
are studied and analyzed in detail. The section concludes
by investigating in detail the peculiar property of magnetic
field-induced permanent electric dipole moments. Finally
we provide our conclusions in Section 5.

2 Magnetic field configurations

The atom chip allows the generation of almost arbitrary
magnetic field landscapes above its surface by combin-
ing external homogeneous fields with the inhomogeneous
field created by the currents flowing in micron-sized wires
on the chip [12,13]. However, despite this large vari-
ety, it turns out that there are only a few generic field
configurations. These include two-dimensional quadrupole
field (sideguide), the Ioffe-trap and the three-dimensional
quadrupole field.

The sideguide is generated by a current carrying wire
whose ’circular’ magnetic field is superimposed by an ex-
ternal homogeneous bias field perpendicular to the direc-
tion of the current flow. As a result the field vanishes along
a line parallel to the wire at a distance ρ0 = µ0I/2πB be-
ing completely determined by the current I and the homo-
geneous magnetic field strength B. The Taylor expansion
of the field around ρ0 yields
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These are the quadrupolar, hexapolar and octopolar ex-
pansion terms of the field. Here we restrict ourselves to
the linear term which should provide a good approxima-
tion for sufficiently large values of ρ0. Thus we obtain the
expression

�B2D = b




x
−y
0


 . (2)

Here b is the magnetic field gradient determining the linear
growth of the field with increasing distance from the line
of zero field. To avoid the line of zero field this setup has
to be slightly modified: By superimposing an additional
homogeneous field along the z-direction a so-called Ioffe-
trap is created.

Whereas the latter configurations only provide a two-
dimensional confinement a so-called three-dimensional

quadrupole field constitutes a trap in all three spatial di-
mensions. It is given by

�B3D = b




x
y

−2z


 . (3)

In practice such a field is generated to a good approxi-
mation by a U-shaped wire [14]. In this investigation we
exclusively study the structure and dynamics of atoms in
the three-dimensional quadrupole field (3).

3 Center of mass motion of ground state
atoms

In this section we investigate the resonant motion of atoms
being trapped in a three-dimensional quadrupole trap. We
assume that the atoms behave like neutral point-like par-
ticles which couple only through their total angular mo-
mentum to the magnetic field. This approximation is valid
if the internal, i.e. electronic, structure effects are negligi-
ble which in particular holds for atoms in their electronic
ground states. So far several authors have investigated the
quantum behavior of neutral spin particles in a number of
inhomogeneous field configurations: there have been stud-
ies regarding the wire trap [15–18], the magnetic guide and
the Ioffe trap [19–21,11]. Except for the wire trap none of
the latter allows for strictly bound states. For the latter
even analytical results can be obtained if spin- 1

2 -particles
and an infinitely thin wire are considered. In the context of
cold neutron physics such solutions where obtained for the
first time by Blümel and Dietrich by solving a fourth-order
Hamburger equation [18]. Further investigations regarding
the wire trap have been undertaken by Vestergaard Hau
et al. [16] who have pursued a supersymmetric approach
in order to obtain the Rydberg series of bound states. Par-
ticles of higher spin trapped by wires of a finite thickness
have been investigated in the work by Burke et al. [17].
The quadrupole trap was first subject of investigation in
a work by Bergeman et al. [22]. The authors have calcu-
lated about two dozens of resonances, i.e. the resonance
energies and decay widths of spin- 1

2 -particles. Their nu-
merical method is based on determining the phase shift of
scattered waves.

In this section we formulate the Hamiltonian and cal-
culate hundreds of resonances of spin-1-particles by utiliz-
ing the complex scaling method. We are therefore able to
analyze and discuss global features of the resonance spec-
trum and the density of states. We also analyze under
which conditions stable states can be achieved.

3.1 The Hamiltonian

The coupling to the external field is established by the
interaction of the atomic magnetic moment with the mag-
netic field. The underlying Hamiltonian then becomes

H ′ =
�p 2

2M
− �µ · �B (�r) (4)
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with M and �µ being the mass and the magnetic moment
of the atom, respectively. By assuming that the hyperfine
splitting of the atomic energy levels is sufficiently large
the hyperfine manifolds approximately decouple. Thus the
quantum number F is approximately conserved. In each
of the hyperfine-manifolds the magnetic moment can be
represented by

�µ = −g

2
�S (5)

with �S being the spin-matrices of a spin-F -particle and g
the respective g-factor. Inserting equation (3) the Hamil-
tonian becomes in atomic units1

H ′ =
1

2M

[
�p2 + b g M (xSx + y Sy − 2z Sz)

]
. (6)

All parameters in the Hamiltonian can be removed by
introducing the scaled coordinates x̄i = (bgM)

1
3 xi and

p̄ = (bgM)−
1
3 pi. Omitting the bars the Hamiltonian be-

comes

M (bgM)−
2
3 H ′ = H =

1
2

(
�p2 + xSx + y Sy − 2z Sz

)
.

(7)
Therefore the energy level spacing scales according to
(bgM)2/3/M .

3.2 Symmetries of the Hamiltonian

Before continuing we change the coordinate system to a
cylindrical one (�r → (ρ, φ, z)) and employ the unitary
transformation

U1 = e−iSzφ. (8)

The Hamiltonian (7) becomes

H̃ = U+
1 HU1 =

1
2

[
− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

1
ρ2

(Lz − Sz)2

− ∂2

∂z2
+ ρSx − 2zSz

]
. (9)

In the transformed frame the Hamiltonian does not con-
tain an explicit dependence on the azimuthal angle φ.
Thus the quantity Lz is conserved, i.e.

[
H̃, Jz

]
= 0. In

order to see the physical meaning of Lz we transform back
into the initial frame and find

U1LzU
+
1 = Lz + Sz = Jz. (10)

Thus the fact that Lz is conserved in the transformed
frame is a direct consequence of the conservation of Lz

in the initial frame, i.e. [H, Jz] = 0. Apart from rotations
around the z-axis the Hamiltonian (9) is also invariant

1
� = 1, me = 1, a0 = 1, e = 1: the magnetic gradient unit

then becomes b = 1 a.u. = 4.44181 × 1015 T/m. The magnetic
field strength unit is B = 1 a.u. = 2.35051 × 105 T.

under the operation Σx = PzPyeiπSx , with Pz and Py

being the z- and y-parity operation. Since Σx and Lz anti-
commute, i.e. {Lz, Σx} = 0 one can immediately show the
existence of degeneracies in the spectrum.

Suppose |E, m〉 is an energy eigenstate of the Hamil-
tonian H̃ and at the same time an eigenstate of Lz

with the quantum number m. Using the anti-commutator
{Lz, Σx} = 0 one finds

LzΣx |E, m〉 = −ΣxLz |E, m〉 = −mΣx |E, m〉 . (11)

Thus the state Σx |E, m〉 can be identified with |E,−m〉.
Except for m = 0 these states form a degenerate pair
since they possess the same energy. For a more detailed
discussion of the symmetry properties we refer the reader
to [9,10,23].

3.3 Resonances, decay widths, lifetimes and density
of states

The three-dimensional quadrupole trap does not allow for
strictly bound states: there is a point of zero field in the
trap center causing so-called Majorana-spin flips which re-
sult in losses from the trap [25]. Thus the Hamiltonian (9)
possesses rather a resonance than a bound spectrum.

We now specify our investigations to the case of spin 1,
i.e. the atomic hyperfine state has to have the quantum
number F = 1. In order to find the resonance spectrum
of the Hamiltonian (9) we employ the complex scaling
method. Here the phase space coordinates are rotated
into the complex plane: xk → xkeiη leading to a complex
Hamiltonian. The complex scaling transformation does
only affect continuum and not the bound states. Reso-
nance states can become square integrable and at the same
time their energy is rotated into the lower half of the com-
plex energy plane [26]. In general the position of the com-
plex energy will depend on the value of the scaling angle
η: continuum states are rotated by an angle 2η from the
real axis whereas energies belonging to resonance states
once revealed maintain their positions. For such states the
complex energy ε can be written as

ε = E − i
Γ

2
. (12)

Here E and Γ are the energy and the decay width of
the resonance, respectively. Therefore the lifetime τ of a
certain resonance evaluates to τ = Γ−1.

In Figure 1 we present resonance energies and decay
widths for several values of the quantum number m. For
m = 0 and m = 1 one finds a triangular distribution of
the resonances in the upper right of the E − Γ plane.
The resonances are placed on a series of diagonal lines
with negative slope. The shape of the resonance pattern
undergoes a significant alteration when reaching higher
values of m. The pattern still exhibits a triangular shape,
but the hypotenuse of it now possesses a positive slope. At
the same time the arrangement of the resonances becomes
increasingly regular.



34 The European Physical Journal D

2 4 6
10

−2

10
−1

10
0

E [a.u.]

Γ 
[a

.u
.]

m = 0 

2 4 6
10

−2

10
−1

10
0

E [a.u.]
Γ 

[a
.u

.]

m = 1 

4 5 6 7

10
−2

10
−1

E [a.u.]

Γ 
[a

.u
.]

m = 6 

7 8 9 10

10
−5

10
−4

10
−3

E [a.u.]

Γ 
[a

.u
.]

m = 20 

Fig. 1. Energies E and decay widths
Γ (logarithmic scale) of resonances in
the magnetic quadrupole trap for four
values of the quantum number m. The
structure of the resonance energy pat-
tern undergoes a significant alteration
with increasing m.

The density of states (DOS) profile dN(E)i/dE of a
resonance state is determined by its energy Ei and the
decay width Γi through [26]

dN

dE
(E)i =

Γi

π

1
Γ 2

i + (E − Ei)2
. (13)

The total density of states is obtained via

dN

dE
(E) =

∑
i

dN

dE
(E)i. (14)

In Figure 2 we present the DOS for 4 selected values of
the quantum number m. For m = 0 we observe broad
peaks. The peaks of the DOS are determined by the res-
onances possessing the smallest decay width. The high
background level is formed by short lived states. At m = 5
the energetically lowest resonance is well separated. At
the same time a substructure becomes visible for energet-
ically higher peaks. This substructure becomes manifest at
m = 10 and at m = 15 extremely sharp peaks are formed.
These sharp resonances are an indication for almost sta-
ble states. The peaks form clearly separated groups. The
number of sub-peaks in adjacent groups differs by one.

Finally we want to investigate the decay width of the
energetically lowest resonance in each m subspace. The
corresponding behavior is presented in Figure 3. The de-
cay width declines with increasing angular momentum.
Performing an exponential fit we find Γ ≈ 0.68 e−0.56|m|.

3.4 Quasi-bound states

In the preceding section we have found that the resonance
states become increasingly stable the higher the angular

momentum quantum number m is chosen. Thus it seems
to be reasonable to expect that such states can be de-
scribed as bound solutions of a given Schrödinger equa-
tion. In this section we will formulate such equation and
analyze the quality of the provided approximation.

For large displacements from the trap center the inter-
action term of the magnetic moment with the magnetic
field dominates the Hamiltonian. This term can be diago-
nalized applying the unitary transformation

U2 = e−iSyβ (15)

with sinβ = ρ/
√

ρ2 + 4z2 and cosβ = −2z/
√

ρ2 + 4z2.
The transformation performs a rotation in the spin space
such that the z-component of the spin points into the local
direction of the magnetic field vector. The interaction term
now becomes

U+
2 (ρSx − 2zSz)U2 =

√
ρ2 + 4z2Sz =

∣∣∣ �B
∣∣∣ Sz. (16)

Since U2 is a local, spatially dependent, transformation it
also affects the derivatives. They transform as follows

U+
2

∂2

∂X2
U2 =

∂2

∂X2
− 2iSy

∂β

∂X

∂

∂X

− iSy
∂2β

∂X2
− S2

y

(
∂β

∂X

)2

. (17)

The derivatives of β can be evaluated by using the formula

∂β

∂X
= − 1

sin β

∂ cosβ

∂X
. (18)
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Fig. 2. Density of states for 4 se-
lected values of the quantum number
m. For small angular momentum the
DOS is dominated by the longest liv-
ing resonances which emerge from the
high background level. Increasing an-
gular momentum leads to a general de-
cline of the decay width. Thus more
peaks appear as the angular momen-
tum increases. At the same time the
background level decreases. At m =
15 one finds extremely narrow reso-
nances which indicate extremely long-
lived states.
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Fig. 3. Decay width of the energetically lowest resonance plot-
ted against the quantum number m of the z-component of the
total angular momentum. An exponential decrease of the de-
cay width is observed. The increased stability of high m states
originates from a localization of such states far away from the
center of the trap.

Here X is used as a placeholder for the coordinates ρ
and z. The Schrödinger equation resulting from the trans-
formed Hamiltonian (9) now reads:

1
2

[
− ∂2

∂ρ2
− ∂2

∂z2
− 1

4ρ2
+

i2Sy

| �B|

(
cosβ

∂

∂ρ
+ 2 sinβ

∂

∂z

)

+
S2

y

| �B|2 (cos2 β + 4 sin2 β) +
i6Sy sin β cosβ

| �B|2

+
1
ρ2

(m − cosβSz + sin βSx)2 + Sz| �B|
]
|Φ〉 = E|Φ〉.

(19)

Note that we have introduced the wavefunction |Ψ〉 =
ρ−

1
2 |Φ〉 and replace Lz by its quantum number m. Al-

though making the interaction term simpler it seems that
nothing is gained since the kinetic term looks complicated.
However, we now see that in the limit of very large dis-
placements (ρ → ∞) from the trap center the Schrödinger
equation takes the form

1
2

[
− ∂2

∂ρ2
− ∂2

∂z2
+ Sz

∣∣∣ �B
∣∣∣
]
|Φ〉 = E |Φ〉 . (20)

Here Sz which now can be interpreted as the projection of
the spin on the local direction of the magnetic field consti-
tutes a conserved quantity. The projection quantum num-
ber ms now defines whether trapping is possible at all. For
F = 1 only for ms = 1 trapped states can be expected. In
order to find an approximate Schrödinger equation which
describes this eventually bound states we project equa-
tion (19) onto the state |+〉 which is the eigenstate of Sz

with the eigenvalue ms = 1. This yields

1
2

[
− ∂2

∂ρ2
− ∂2

∂z2
+

m2 + 3
4

ρ2
+

4m z

ρ2
√

ρ2 + 4z2
− 1

2(ρ2 + 4z2)

+
2(ρ2 + z2)

(ρ2 + 4z2)2
+

√
ρ2 + 4z2

]
|Φqb〉 = Eqb |Φqb〉 . (21)

The coupling terms we have neglected are proportional
to powers of z−1 if ρ → 0 and ρ−1 if z → 0. Thus they
become important only in the vicinity of the center of
trap, where they lead to transitions between bound and
unbound solutions. For large values of m the angular mo-
mentum barrier (m2 + 3/4)/ρ2 prevents the particle from
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Table 1. Comparison of the resonance energies to the approximate energies Eqb obtained from equation (21). The first six
resonance energies E for 5 selected values of the quantum number m are provided.

0 1 2 3 4 5

E 2.1759 2.8639 2.8810 3.4898 3.5011 3.5233

m = 0 Eqb 2.0219 2.7252 2.7402 3.3725 3.3866 3.3900

E 2.2381 2.6590 3.0786 3.2702 3.5605 3.7222

m = 1 Eqb 2.0715 2.6180 2.9294 3.2149 3.4236 3.6123

E 3.5061 4.0377 4.1537 4.5472 4.6497 4.7384

m = 5 Eqb 3.4482 3.9775 4.0965 4.4890 4.5885 4.6856

E 6.2349 6.6549 6.7176 7.0645 7.1261 7.1789

m = 15 Eqb 6.2174 6.6408 6.6967 7.0527 7.1100 7.1545

E 8.4863 8.8483 8.9014 9.2043 9.2575 9.3042

m = 25 Eqb 8.4776 8.8409 8.8916 9.1978 9.2492 9.2932

Table 2. Energy unit, length unit as well as energy and lifetime
of the ground state resonance for 7Li (2S1/2, F = 1) and 87Rb
(5S1/2, F = 1) at a gradient b = 100 T/m.

energy unit length unit Egs τgs

[neV] [nm] [neV] [µs]
7Li 0.584 100.95 1.27 3.20

87Rb 0.254 43.87 0.55 7.36

entering this region. In the following we will refer to the
solutions of (21) as the quasi-bound states.

In Table 1 we present a comparison of the exact res-
onance energies to the quasi-bound energies Eqb. The en-
ergies show the expected behavior: for small angular mo-
menta one finds larger discrepancies (∆E/E = 0.07 for
the ground state in the m = 0 subspace). However, as
predicted, the approximation becomes significantly better
if m is increased. The deviation of the ground state res-
onance in the m = 25 subspace evaluates to ∆E/E =
1 × 10−4.

3.5 Resonances of magnetically trapped alkali atoms

The results given in this paper can be directly applied to
magnetically trapped alkali atoms. As instructive exam-
ples we choose the following two species: 7Li being in the
hyperfine ground state 2S1/2, I = 3/2, F = 1 and 87Rb
being in the hyperfine ground state 5S1/2, I = 3/2, F = 1.
Here I and F denote the quantum numbers of �F 2 and �I2,
respectively. For the above hyperfine state we find for 87Rb
g = 1/2 and M = 155798.23 me and for 7Li g = 1/2 and
M = 12789.55 me. In Table 2 we provide the energy and
length unit as well as the energy Egs and lifetime τgs of
the ground state resonance at a gradient b = 100 T/m. For
this gradient the lifetimes are of the order of µs. The life-
time of trapped states can be significantly prolonged if the
atom is prepared in states of high angular momentum. In
case of 87Rb (7Li) being prepared in the m = 35 subspace
the minimum lifetime evaluates to 75.3 s (32.7 s).

4 Electronically excited atoms

In the first part of this paper we assumed that an atom
can be approximated as a neutral point-like particle. This
approximation is only valid if the variations of the ex-
ternal magnetic field are negligibly small throughout the
atomic length scale. We will now concentrate on a thor-
oughly different regime, namely the structure of electron-
ically excited atoms. By utilizing the benefits of the small
structures of the atoms chips it is possible to generate
magnetic fields which indeed vary significantly over typi-
cal size of such atoms. In such strong fields an atom can no
more be treated as a point-like particle. Instead one has
to take the various couplings of its individual components
to the magnetic field into account. This gives rise to new
phenomena such as non-trivial spin-polarizations which
will be discussed in the following part of the paper. An
extensive discussion of the electronic structure of atoms
in quadrupolar magnetic fields can be found in [10,11,27].

4.1 The Hamiltonian

In our investigations we focus on atoms with a single ac-
tive electron such as alkali atoms. Thereby, we assume
the motion of the outermost (valence) electron to take
place in a Coulomb potential of a single positive point
charge, i.e. we assume the nuclear charge to be screened
by the inner electron shells. For sufficient highly excited
states this should provide a reasonable (approximate) de-
scription. We do not account for interactions arising from
the non-Coulombic character of the core potential or rel-
ativistic effects such as spin-orbit coupling. Furthermore
we neglect the coupling of the nuclear and electronic spin,
i.e. the hyperfine interaction. Since the latter two interac-
tions drop off as r−3 their treatment in terms of pertur-
bation theory should be appropriate. The inclusion of the
non-Coulombic nature of the core potential could be done
via quantum defect theory and/or core pseudopotentials
which goes beyond the scope of this paper.

The presence of an external magnetic field prevents
the decoupling of the electronic and center of mass (c.m.)
motion of the atom. This holds in particular for the
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case of a homogeneous magnetic field [28–31] and has
also to be expected for an inhomogeneous field. How-
ever, c.m. motional effects on the electronic structure be-
come only significant in certain parameter and/or ener-
getic regimes [32–34]. We take here advantage of the heavy
atomic mass compared to the electron mass (mA � me =
1). In addition we exploit the fact that we are dealing with
ultra cold atoms whose c.m. motion takes place on much
larger time scales than the electron dynamics, even for
highly excited electronic states. We assume here that the
atomic core (nucleus) is fixed in space at the trap center
which coincides with the origin of the coordinate system.
The Hamiltonian describing the electronic motion reads
then

HC =
1
2

(
�p + �A(�r)

)2

− 1
r

+
gs

2
�S �B(�r). (22)

Note, that unlike in the first part of this paper no scaled
coordinates are used. A vector potential in the Coulomb
gauge (∇ �A(�r) = 0) belonging to the quadrupole field (3)
reads

�A(�r) =
1
3

[
�B(�r) × �r

]
= b




yz
−xz

0


 . (23)

Inserting the expressions (3) and (23) into the Hamilto-
nian (22) yields

HC = −1
2
∆ − 1√

x2 + y2 + z2
− b zLz

+
b2

2
z2

(
x2 + y2

)
+

b

2
(σxx + σyy − 2σzz) . (24)

Here we have set the electronic g-factor to gs = 2. Lz is
the z component of the orbital angular momentum opera-
tor, and σx, σy, σz are the Pauli spin matrices (�S = 1

2�σ).
The third and fourth term of HC originate from the charge
coupling to the external field. The paramagnetic (∝ b) or
Zeeman term depends not only on Lz but also linearly on
the z-coordinate. The diamagnetic term (∝ b2) represents
a quartic oscillator coupling term between the cylindrical
coordinates ρ =

√
x2 + y2 and z. The final term of HC

originates from the coupling of the magnetic moment of
the spin of the valence electron to the magnetic field. It
depends linearly on the gradient and prevents the factor-
ization of the motions in the spin and spatial degrees of
freedom. Thus the corresponding Schrödinger equation is
rendered into a spinor equation. In the case of a homo-
geneous field the spin dynamics can be decoupled from
the spatial motion which leads to a scalar Schrödinger
equation. This non-trivial spin-field coupling term is es-
sential for the emergence of a plethora of new effects such
as the emergence of magnetic field induced electric dipole
moments.

4.2 Symmetries of the Hamiltonian

For the following investigations it is appropriate to trans-
form the Hamiltonian (24) employing spherical coordi-

nates. It then reads

HS = −1
2
∆r,θ,φ − 1

r
+

b2

2
r4 cos2 θ sin2 θ

+
b

2
r sin θ K − b r cos θ (Lz + σz) (25)

with K being the matrix

K =
(

0 e−iφ

eiφ 0

)
. (26)

Like the Hamiltonian (7) we find HS to be invariant un-
der rotations around the z-axis. Hence we find [HS , Jz] =
0. Moreover we find another symmetry of the system,
namely PyPzσx. This quantity anti-commutes with Jz ,
i.e. {Jz, PyPzσx} = 0. Using the same argument as in
Section 3.2 one can show, that the states |E, m〉 and
PyPzσx |E, m〉 = |E,−m〉 form a degenerate pair. Since
Jz can only assume half-integer values this degeneracy is
found for any electronic state.

4.3 Energy spectrum

The eigenvalue problem of the Hamiltonian (25) is ob-
tained by using the linear variational principle with a
Sturmian basis set. In order to estimate the convergence
behavior of the eigenstates we at first calculate a number
of eigenvalues EG1

i for a given basis set size G1. After-
wards the basis size is significantly increased to a value
G2 and the calculation is performed again yielding the
new set of eigenvalues EG2

i . As a measure of convergence
we then define the quantity

Ki =

∣∣∣∣∣
EG1

i − EG2
i

EG1
i − EG1

i−1

∣∣∣∣∣ (27)

where the difference of the same eigenvalue for the two
basis sizes G1 and G2 is divided by the distance to the
lower neighboring eigenvalue. For Ki ≤ 0.01 we consider
the eigenvalue EG2

i to be well converged. In our calcula-
tions we have employed basis sets with dimensions up to
17,000 (in case of a homogeneous magnetic field even more
than 100,000). We thereby were able to converge several
thousand eigenstates and eigenvalues up to energies corre-
sponding to a principal quantum number of n ≈ 60 with
Jz-quantum numbers m ε [−7/2, 7/2]. A thorough discus-
sion of this procedure is found in [27].

Starting from b = 0 the energy spectrum undergoes
significant changes with increasing gradient. Essentially
one can distinguish three regimes which are the weak, the
intermediate and the strong gradient regime. Of course,
these regimes are not only determined by the absolute
value of the gradient b but also by the degree of excitation
of the atom. Thus it is natural to define the weak/strong
regime to be the regime, for which the magnetic compared
to the Coulomb interaction is weak/strong [35]. For weak
gradients the behavior of the energy levels is dominated
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Fig. 4. Energy spectrum of the multiplets n = 33−37 for the states with
m = ±1/2. For low gradients the energy levels split almost linearly followed by
a transition region where the diamagnetic term becomes increasingly more im-
portant. For high gradients different n-multiplets overlap and no symmetries, i.e.
approximate quantum numbers, are left.
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Fig. 5. Expectation values of the z-
component of the spin operator as a
function of the quantum number n for
different gradients (a: b = 10−10, b:
b = 10−9) in the m = 3/2 subspace.

by the orbital and spin Zeeman terms both of which de-
pend linearly on the gradient. We find a linear splitting
of the degenerate n-multiplets with increasing b. Adjacent
n-multiplets do not overlap which makes n an almost good
quantum number.

With increasing gradient the diamagnetic term with its
quadratic dependence on b gains in importance resulting
in a non-linear behavior of the energy curves. The intra
n-manifold mixing regime scales b ∝ n−6. In this regime
different n-multiplets are still energetically well separated
but different angular momentum states (l-states) mix. For
even higher gradients we observe mixing of different n-
multiplets which leads to the global emergence of avoided
crossings. The onset of this inter n-manifold mixing scales
according to b ∝ n−11/2 whereas in a homogeneous field
one finds B ∝ n−7/2. In Figure 4 we show the energy
levels of n-multiplets ranging from n = 33 to n = 37
with m = ± 1

2 in the regime 0 ≤ b ≤ 10−8. For such a
degree of excitation the intra n-manifold mixing sets in at
b ≈ 5 × 10−10. Therefore the linear splitting due to the
Zeeman-term is hardly visible. For b = 8 × 10−9 we are
deep inside the inter-n-mixing regime.

4.4 Properties of the electronic spin

4.4.1 Expectation values

For an atom being exposed to a homogeneous magnetic
field pointing into z-direction the z-component of the elec-
tronic spin Sz yields a conserved quantity. In this case, the
electronic wavefunctions can be chosen to be eigenfunc-
tions of Sz. Hence the expectation value 〈Sz〉 can only as-
sume one of the two values ± 1

2 . Due to the non-trivial spin-

field interaction term Sz constitutes no conserved quantity
if a quadrupole field is present. In Figure 5 we present the
distribution of 〈Sz〉 for electronic states of the m = 3

2
subspace as a function of the effective principal quantum
number n =

√−1/2E 2. Since Sz is not conserved the
values of 〈Sz〉 cover the complete interval [−1/2, 1/2]. In
Figure 5a (b = 10−10) one observes a regular distribution
of the expectation values as long as | 〈Sz〉 | > 0.3. The
dots with largest 〈Sz〉 correspond to the so-called ellip-
soidal states [27] which possess large mean orbital angular
momentum and are almost completely spin polarized. In
contrast to this the states corresponding to the smallest
values of 〈Sz〉 show a small expectation value of the orbital
angular momentum. Around 〈Sz〉 = 0 the distribution of
the expectation values appears to be irregular and less
dense. Unlike this one would encounter an overall regular
and even distribution if the m = 1/2 subspace was consid-
ered [10]. For low n the values of 〈Sz〉 form vertical lines
which originate from the approximate degeneracy of the
energy levels. When reaching higher degrees of excitation
these lines widen. For b = 10−10 we do not find significant
inter-n-mixing up to n = 60. Thus, all lines in Figure 5a
are well separated. For larger gradients b = 10−9 (Fig. 5b)
the above-discussed properties are equally present for low-
lying states. However, with increasing excitation energy
we enter the inter-n-mixing regime at n ≈ 35. Here any
regular structure is dissolved and an overall irregular dis-
tribution of 〈Sz〉 values appears. For 〈Sz〉 > 55 the distri-
bution narrows significantly. Here the occupied interval is
approximately [−0.3, 0.3].

2 Since an external magnetic field is present n is not a genuine
quantum number. It can also assume fractional values.
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Fig. 6. (a) Sz-polarization of an elec-
tronic state whose energy corresponds to
an effective principal quantum number of
n = 9. The state is located in the m = 1

2
-

subspace. The magnetic field gradient is
b = 10−9. (b) Sz-polarization of an highly
excited state. With an effective quantum
number n = 44.29 its situated in the inter-
n-mixing regime. The values for m and b
are the same is in (a). A colour version of
the figures is available in electronic form
at http://www.eurphysj.org.

4.4.2 Spin polarization

As already pointed out the non-trivial coupling of the spin
to the spatial degrees of freedom prevents the factorization
of the wavefunction into a spatial and a spin part. Hence,
the orientation of the electronic spin is expected to depend
on the spatial position of the electron. To study this in
more detail we introduce the Sz-polarization WS(�r). For
a Jz-eigenstate |E, m〉 it reads

WS(�r) =
〈E, m|�r〉Sz 〈�r|E, m 〉
〈E, m|�r〉 〈�r|E, m 〉 . (28)

In Figure 6 we present the Sz-polarization of two excited
states. The first one (Fig. 6a) has an effective principal
quantum number of n = 9 and is located in the m = 1

2 -
subspace. The magnetic field gradient is b = 10−9. We
observe a complex pattern of domains exhibiting different
spin orientation (red: spin up, blue: spin down). If the spin
and the spatial part of the wavefunction factorized as it is
the case for homogeneous field we would encounter a spa-
tially uniform distribution. For small displacements from
the coordinate center we observe the domains to form a
pattern similar to that of a chess board. With increases
distance we encounter a transition region where the for-
mation of stripes with different spin orientation sets in.
The junctions where four spin domains meet each other
coincide with the nodes of the spatial probability density.
Our investigation revealed that both the Coulomb inter-
action and the spin-Zeeman term are responsible for the
formation of the interwoven network of islands exhibiting
different spin orientation. The additional presence of the
orbital Zeeman and the diamagnetic term only results in a
deformation of this network. In Figure 6a we show another
Sz-polarization but for a much higher excited state which
an effective principal quantum number of n = 44.29. This
state is already affected by the inter-n-mixing. The pat-
tern exhibits a more complex structure. This is expected
since the number of nodes in the wavefunction is deter-
mined by the degree of excitation. Apparently, the distri-
bution of the spin polarized islands for this state is not
symmetric: For negative/positive z values a dominance
of red/blue colored regions is evident. This feature can
be understood by investigating a Hamiltonian exclusively
consisting of the spin Zeeman term:

ĤS = −�µ �B(�r) =
b

2
r

(−2 cos θ sin θ e−iφ

sin θ eiφ 2 cos θ

)
. (29)

Fig. 7. Sz-polarization of the eigenstate Φ+(r, θ, φ) of the
Hamiltonian (29). The electronic spin either points antipar-
allel (W +

S ) or parallel (W−
S = −W +

S ) to the local direction of
the field. A colour version of the figure is available in electronic
form at http://www.eurphysj.org.

Here the complete dynamics takes place in spin space since
the spatial coordinates (r, θ, φ) are entering as parame-
ters. The Hamiltonian (29) is diagonalized by the trans-
formation U1U2 where U1 and U2 are given through equa-
tions (8) and (15), respectively. Its two solutions are

Φ−(r, θ, φ) = U+
2 U+

1 |↑〉
Φ+(r, θ, φ) = U+

2 U+
1 |↓〉 (30)

with |↑〉 and |↓〉 being the eigenstates of the spin-operator
Sz. The corresponding eigenenergies are

E± = ∓1
2
b r

√
1 + 3 cos2 θ = ∓|�µ|| �B(�r)|. (31)

These energies correspond to those of a spin oriented par-
allel (E−) or antiparallel (E+) to the magnetic quadrupole
field. Constructing the Sz-polarization W±

S of the eigen-
states (30) yields

W±
S = ±1

2
cosβ = ∓ z√

ρ2 + z2
= ∓ cos θ√

1 + 3 cos2 θ
. (32)

The Sz-polarization W+
S shown in Figure 7. Both, W+

S

and W−
S = −W+

S neither depend on the radial coordinate
nor on the azimuthal angle φ. For negative values of z the
z-component of the spin is oriented upwards/downwards
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Fig. 8. Expectation value of the dipole
operator Dz plotted versus the prin-
ciple quantum number n for different
gradients (a: b = 10−10, b: b = 10−8).
The states lie in the m = 3/2 subspace.

Fig. 9. (a) Charge distribution of an electronic state in a quadrupole field (b = 10−8). The state belongs to the n = 21-multiplet
in the m = 1/2 subspace. The asymmetric charge distribution with respect to the z = 0-line gives rise to a permanent electric

dipole moment. (b) Charge distribution for an electronic state (n ≈ 21, m = 1/2) in a homogeneous field �BH = B�ez (B = 10−6).
The electron cloud is mirror symmetric with respect to both the z = 0- and ρ = 0-line. Thus, no permanent electric dipole
moment occurs. A colour version of the figures is available in electronic form at http://www.eurphysj.org.

whereas the opposite orientation is found for positive z
values. Around the z-axis there is a transition region with
W±

S being close to zero.
This is precisely the behavior we have observed at

large r for the Sz-polarization of the highly excited state
depicted in Figure 6b. Apparently in this particular state
the electron spin prefers an antiparallel alignment with
respect to the external field at large radii which corre-
sponds to W+

S . This situation is to some extend reminis-
cent of the quasi-bound states which have been discussed
in Section 3.4. Here the far away from the trap center the
magnetic field interaction dominates the Hamiltonian and
the projection of the particles spin on the local direction
of the magnetic field is conserved.

4.5 Magnetic field induced electric dipoles

For an atom in a homogeneous field (and also in the
field free case) parity is a symmetry. Thus electronic
states do not exhibit a permanent electric dipole mo-
ment: 〈 �D〉 = 〈�r〉 = 0. In this subsection we investigate
the electric dipole moment of the electronic states of an
atom in the quadrupole field. Due to the rotational in-
variance of the system the expectation values 〈x〉 and 〈y〉
vanish. However, the expectation value of Dz = z is in
general non-zero. It is shown in Figure 8 for the two gra-

dients b = 10−10 and b = 10−8, respectively. Similar to
the Sz expectation value (see Sect. 4.4) we find the elec-
tric dipole moments which belong to the almost degener-
ate states of an n-multiplet to be arranged along verti-
cal lines. Within a given n-multiplet the dipole moments
vary within an upper and a lower bound. In the absence
of inter-n-mixing both of these bound depend approxi-
mately linearly on n. States with a large electric dipole
moment emerge from field-free states (with increasing b)
that possess small values for the angular momentum and
vice versa. For b = 10−8 and n > 35 the distribution of
the dipole moments becomes completely irregular.

We have shown the remarkable effect that the exter-
nal magnetic quadrupole field induces a state dependent
permanent electric dipole moment. This is the result of
an asymmetric charge density distribution induced by the
symmetry properties of the quadrupole field. Figure 9a ex-
emplarily shows the density distribution of an electronic
state inside a quadrupole field. The electronic cloud is al-
most completely localized in the z > 0 half-space which
results in a large dipole moment. In contrast to that one
finds for states inside a homogeneous field �BH = B�ez a
symmetric charge distribution (see Fig. 9b).

In particular in the context of Quantum Informa-
tion Processing the emergence of state dependent elec-
tric dipole moments seems be an interesting phenomenon.
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In order to build a working two qubit gate one is inter-
ested in finding ways to establish a controlled interaction
between two qubits to gain a phase shift. Considering a
trapped Rydberg state as a qubit the interaction between
two of them can be realized via dipole-dipole interaction.
The magnitude of this interaction could be tuned at will
just by changing the atomic state in the quadrupole field.

5 Conclusion

In the first part of this paper we have analyzed the quan-
tum dynamics of atoms in a 3D magnetic quadrupole field.
The atoms are hereby treated as point particles carrying
a specific angular momentum, i.e. magnetic moment. We
have set up the Hamiltonian and performed an analysis of
its symmetry properties. In this context we have proven
the existence of degeneracies in the resonance spectrum of
the system.

The resonance spectrum of atoms being trapped in a
F = 1 hyperfine state has been presented. The resonance
energies for a wide range of values of the quantum number
m is discussed and the distribution of the resonance posi-
tions in the E −Γ plane is analyzed. For low m values we
have found a triangular shaped pattern exhibiting both
regular and irregular regions. For large angular momenta
the transition of the resonance positions to a regular pat-
tern is observed. From the resonance data we have calcu-
lated the density of states. For small m values the DOS is
dominated by a few peaks on top of a strong background.
The width of these peaks decreases if the angular momen-
tum is increased. With increasing m the DOS becomes
more structured until sharp peaks emerge which indicate
long-lived states.

We have further shown that there is an exponential
increase with respect to the lifetimes of the resonance
states with increasing angular momentum. We have shown
that transitions between bound and unbound solutions
take place only in the vicinity of the trap center and are
therefore highly suppressed for large angular momentum
states. The latter quasi-bound states, which possess long
lifetimes, can be very well described by a scalar radial
Schrödinger equation. Its approximate eigenenergies are
in good agreement with the resonance energies obtained
from the complex scaling calculation and become exact in
the limit of high m quantum numbers.

The results have been applied to 87Rb and 7Li being
trapped in a F = 1 hyperfine state. We have shown that
lifetimes of the order of minutes can be achieved for suffi-
cient large values of the angular momentum.

In the second part of this paper we investigate the elec-
tronic structure of electronically highly excited hydrogen-
like atoms assuming an infinitely heavy nucleus that is
fixed at the center of the trap. We have pursued an one-
particle approach in order to describe the dynamics of the
valence electron of the excited atom. Here we have con-
sidered both the coupling of the electric charge and the
magnetic moment (spin) to the field. The inhomogeneous
character of the quadrupole field results in a coupling of
the spatial and spin degrees of freedom. As a result of this

unique coupling the system is invariant under a number
of symmetry operations acting on both degrees of free-
dom. We have found unitary symmetries relying on the
conservation of the total angular momentum Jz and the
discrete operation PyPzσx. Here we could also prove the
presence of a two-fold degeneracy in the energy spectrum.
We have provided scaling relations for the onset of both
the intra- and the inter-n-manifold mixing in a quadrupole
field. Modifications of the energy spectrum especially due
to scattering with the inner electron shells have not been
considered. Effects basing on the latter can be understood
by quantum defect theory [36,37]. At least for Rydberg
states which possess a large angular momentum we do
not expect significant changes induced by core scattering
processes.

The system is numerically solved by using the linear
variational principle employing a Sturmian basis set. We
present the energy spectrum and discuss its particular ap-
pearance in the weak, intermediate as well as the strong
gradient regime.

Analyzing the electronic spin properties we have found
the Sz-expectation values of the electronic states to form
a regular pattern at low gradients. At higher gradients
or higher excitation, respectively, the regular structure
is replaced by a much narrower irregular distribution.
To investigate of the local spin orientation we have in-
troduced the Sz-polarization. For electronic states in the
quadrupole field this quantity reveals a rich nodal struc-
ture which originates from the unique coupling of the
spin and spatial degrees of freedom. The chess-board-like
structure consisting of islands with alternating spin ori-
entations at low radii is replaced by striped pattern as
the radius increases. For Rydberg states we have found
a spin polarization effect taking place in the asymptotic
region. Here the Sz-polarization exhibits a global depen-
dence on the z-coordinate. This has been analyzed by
studying a Hamiltonian which exclusively describes the
coupling of the electronic spin to the magnetic field. Cal-
culating its eigenstates analytically we could reproduce
the above mentioned z-dependence of the Sz-polarization
of Rydberg-states for large radii.

By calculating the expectation value of the dipole op-
erator we have found it to be non-zero in general. This is
unlike the situation in the homogeneous field where the
conservation of parity prevents the emergence of perma-
nent dipole moments. For low degrees of excitation and
low gradients we observe an almost linear increase of the
maximum dipole moment within a n-manifold. The previ-
ously regular pattern becomes increasingly distorted when
moving to higher gradients and/or a higher degree of ex-
citation. We have found the non-vanishing dipole moment
to be a direct consequence of the symmetry properties of
the quadrupole field which force an asymmetric electronic
charge distribution with respect to the x − y-plane.
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